Back-to-Back Cruises on the Point Sur

April 14, 2014 by

The week before spring break, I had the pleasure of going on two class cruises back to back on MLML’s research vessel, the Point Sur. On Monday, I set sail with the biological oceanography class as we went out into the Monterey Bay to do a few CTD casts. The Point Sur is equipped with many oceanographic devices, and one of the most important is the CTD, or conductivity, temperature, and depth sensor. Once the CTD is lowered into the water and through the water column, we can get real-time information about the conditions at each depth.  Surrounding the CTD is a rosette of 12 open bottles that can be triggered to close whenever we desire, so as we pull the device back up and onto the ship, we can also sample seawater at various depths.

Biological oceanography students help deploy the CTD

Biological oceanography students help deploy the CTD

The biological oceanography class was particularly interested in phytoplankton and how they differ among different depths. After collecting water samples from the CTD rosette, several different measurements were made, including ATP concentrations and variable fluorescence through a PAM fluorometer. We also filtered water at each depth so that we could later conduct chromatographic analysis on the pigments found in each sample.

Chemical oceanography students prepare the multi-corer

Chemical oceanography students prepare the multi-corer

The next day, I went out with the chemical oceanography class. Early in the day, we also utilized the CTD to collect water samples at various depths to measure the nitrate, phosphate, and silicate composition at each depth. In addition, we got to deploy the multi-corer, which allowed us to collect sediment samples from the bottom of the ocean. Net tows were done to gather concentrated samples of phytoplankton and zooplankton.

Net tows allowed us to collect concentrated samples of phytoplankton and zooplankton

Net tows allowed us to collect concentrated samples of phytoplankton and zooplankton

A smaller group of students was also selected to launch a small boat from the Point Sur and collect surface water samples.

Launching a small boat from the Point Sur!

Launching a small boat from the Point Sur!

We were fortunate enough to have beautiful weather on both days, resulting in two incredible cruises out in the Monterey Bay. For many students, it was their first opportunity to be aboard the Point Sur, and I’m sure we’re all hoping it wasn’t our last.

MLML goes to Baja – the trip continues

March 17, 2014 by

Jackie Lindsey By Jackie Lindsey, Vertebrate Ecology Lab

For the next two weeks Moss Landing Marine Labs will be a little quieter, and not just because of spring break.  A large class of graduate students has just departed for Baja California Sur for two weeks of field research, and I am lucky to be among them!   Many of us have never been to this part the world, and we are full of hopes and dreams that we can pull off the projects we designed back in the classroom.

El Pardito

El Pardito

We are spending the majority of our trip on a tiny island called El Pardito, located within the Sea of Cortez.  This island is home to a small community of fishermen who have lived on the island for generations.  Many of us are depending heavily on their expertise to set up our projects and navigate the local waters.

Our projects range from mapping benthic habitat, to monitoring Marine Protected Areas, to studies of sea turtles and damselfish. We are spending full days in and on the water around El Pardito, and the weather should be just about perfect (fingers crossed)!

Turtle captures on El Pardito http://www.seaturtle.org/imagelib/?photo=6498

When we get back there will be plenty of pictures to post, commemorating our journey and all our hard work, but for now let me leave you with this image of NOT EVEN ALL OF THE GEAR!  Food, cooking tools, boats, compressors, dive gear, camping gear, sampling gear…the list goes on and on (and on and on).

Sampling gear

Sampling gear

Dive gear explosion

Dive gear explosion

I hope we didn’t forget anything because it’s too late now!  See you in two weeks!

Bon Voyage Baja Class!

March 14, 2014 by

IMG_1245The Marine Operations Building (aka the Firehouse) has been a busy place this morning. The Marine Environmental Studies of the Gulf of California class is staring their journey toward La Paz, Mexico today, eventually landing on a small island called Isla Partida just north of La Paz. Here they will conduct a variety of field research projects including sea floor mapping, fish grazing and artisanal fishing studies as well as fish, seaweed and invertebrate surveys.  Check back in a few weeks for a more detailed account of their adventures!

IMG_1230

Graduate students Dorota Szuta and Devona Yates check dive gear before loading their equipment into one of three vehicles traveling down to Baja California.

Captain Jon Douglas (JD) helps Scott Miller and Evan Mattiasen add a bit of extra space to the boat trailer for more gear.

Captain John Douglas (JD) helps Scott Miller and Evan Mattiasen add a bit of extra space to the boat trailer for more gear.

IMG_1243

Dissecting scope, first aid kit, generator, boat patch kit, FOOD, inflatable boats for diving, transect tapes…the list of supplies seems endless for this 3 week endeavor.

IMG_1256

Clint Collins lashes gear to the roof while Instructor Scott Hamilton and Ashley Wheeler load to food supplies.

Clash of the Titans: Killer Whales vs. Blue Whale

March 10, 2014 by

By Marilyn Cruickshank

With a vast habitat like the ocean, unusual encounters might happen all the time, but our chances of observing them are pretty slim. Last week, the naturalists of Monterey Bay Whale Watch had such a chance, when they spotted a pod of killer whales harassing a juvenile blue whale.

Credit: Monterey Bay Whale Watch

While the interaction didn’t last long, it was clear that members of the pod were rushing the rolling rorqual (baleen whale), as it flung its fluke (tail) into the air. Killer whales, which are actually large dolphins, exhibit similar behavior when they hunt gray whale calves. According to Monterey Bay Whale Watch, such an encounter with a blue whale has never before been recorded in California.

Most of the attack occurred underwater, before the larger whale retreated. It surfaced a quarter of a mile, and then a half a mile away from the killer whale pod, apparently deciding that any food gotten in that area was not worth the hassle. Since even juvenile blue whales can be 50 feet long or more, it is unlikely the pod could have done it serious damage or gotten any nutritional benefit. However, blood was spotted on its fluke, which shows that the interaction was not playful.

BLUE WHALE: TAIL THROWS, after encounter with killer whales! You can see a that the right tip of the right fluke is missing. Photo: Daniel Bianchetta.

BLUE WHALE: TAIL THROWS, after encounter with orcas! You can see a little blood flying off of the right tip of the right fluke; this fluke tip is missing. Photo: Daniel Bianchetta.

While we can only speculate about the reasons for bothering the blue whale, one such might be to practice hunting maneuvers specific to that pod, or to teach younger pod members the ropes. More such encounters would have to be observed before any scientific conclusions could be drawn, but even one helps us learn a little bit more about these amazing creatures.

When we see killer whales doing such things, it’s tempting to think of them as bullies, since they seem to gain no nutritional benefits. However, it is important to remember that such activities help to strengthen social ties within the pod, and that killer whales are wild animals that can’t just go to Safeway if they don’t find food that day. The killer whales are simply doing what they do best- working together to hone their skills as predators in a harsh ocean environment. Even still, it’s good to know that the blue whale got away with little harm, ready to eat tons of krill another day.

If you want to see these and other marine mammal and birds in their natural habitat, you can go to Monterey Bay Whale Watch for more information.

All photos were from Daniel Bianchetta from the Monterey Bay Whale Watch.

Sometimes You Have to Celebrate!

March 5, 2014 by

Back in December 2013 I went on my last sampling bout for my thesis to Santa Catalina Island. My team included three amazing colleagues from Moss Landing Marine Laboratories. We conducted surveys in sand and rhodolith beds which will be used to compare the communities. Rhodoliths are free-living calcareous algae that look like little pink tumbleweeds and propagate above sand.

Rhodolith

They appear to provide diverse structure increasing abundance and diversity of flora and fauna, similar to how trees provide habitat for epiphytic plants, climbing vines, and animals like birds and mammals.

Mantis shrimp in a rhodolith bed

A mantis shrimp in the rhodolith bed. They are holding a scallop shell probably found within the bed.  Filamentous red algae is covering the pink rhodoliths.

We conducted surveys to estimate the abundance of macroalgae growing on each substrate, macroinvertebrates, fishes, and took cores for later sorting under a microscope to estimate microinvertebres within each substrate. We celebrated by wearing santa hats which made the long sampling dives more fun. It was a great way to finish up my thesis.

Gabara December 2013 Thesis Team

The Catalina Island December 2013 sampling crew. (from left to right) Sarah Jeffries, Scott Gabara, Will Fennie and Kristin Meagher (taking the photo).

Sarah Jeffries

Sarah Jeffries holding a quadrat and bags filled with core samples, whilst wearing our symbolic santa hat.

Appropriate boat name

An appropriate boat name at Avalon Harbor during my thesis sampling.

Drew Gashler Internship at stake! Please consider donating

February 21, 2014 by

by Ben Yair Raanan, Physical Oceanography Lab

For nearly a decade the Friends of Moss Landing Marine Laboratories (MLML) and the Monterey Bay Aquarium Research Institute (MBARI) have generously awarded a $5,000 summer internship at MBARI to an MLML student in the name of Drew Gashler, a former MLML student and MBARI employee. Unfortunately, due to lack of funds, it may be impossible to offer this incredible opportunity to one of our students this year.

MLML physical oceanography student Diane Wyse placing the nose cone on the Tethys AUV. Photo by: Todd Walsh/MBARI 2012

MLML physical oceanography student Diane Wyse placing the nose cone on the Tethys AUV. Photo by: Todd Walsh/MBARI 2012

Read the rest of this entry »

Journey to the Center of the Slough

February 14, 2014 by

by Catarina Pien, PSRC Lab

If you’ve ever visited our lab, you’ve seen the beautiful waters surrounding us, often bobbing with a variety of marine mammals. The main body of water that surrounds Moss Landing Marine Laboratories is Elkhorn Slough, which is an estuarine embayment that drains into the Monterey Bay.

Beautiful Elkhorn Slough, photo by Jennifer Chiu

Beautiful Elkhorn Slough, photo by Jennifer Chiu

Elkhorn Slough has evolved greatly in the past few centuries. Since the dredging of Moss Landing Harbor in 1946, the slough has become directly connected and thus heavily influenced by the Monterey Bay. This connection has led the slough to change from a freshwater-influenced estuary to a predominantly saltwater-influenced and erosional body of water. A great deal of research has been done to study how these changes have influenced habitat structure and biological communities in the slough.

My own thesis research will focus on Elkhorn Slough, and how various oceanographic variables have changed and are influencing elasmobranch (shark and ray) populations in the slough. I am hoping that the class will be beneficial in showing me how to measure chemical variables, and analyze values in terms of how they influence biological communities.

Map of Elkhorn Slough, from Google Earth

Map of Elkhorn Slough, from Google Earth

Last week, our chemical oceanography class was split into five groups and deployed to various water bodies around our school to take some measurements and water samples. It had just rained earlier that week, so we were hoping there would be some visible differences in salinity and nutrient content in the regions we were sampling. Although the main channel of Elkhorn Slough is heavily influenced by the Monterey Bay, and thus oceanographically similar to the ocean, the upper reaches of the slough are often less saline (depending on the season), and more influenced by precipitation. One group went offshore to Monterey Bay, two groups went into Elkhorn Slough, one drove around to Salinas River, Carneros Creek, and other connected sloughs, and my group sampled in Moss Landing Harbor.

IMG_3811

We took one of our school’s whalers on a beautiful sunny morning, excited (though some of our facial expressions may not be representative) and ready to sample.

Our team!

We motored slowly through the harbor, observing sea lions sunning themselves, and being observed by harbor seals and a portly sea otter.

IMG_3778

Sea lions sunning themselves

IMG_3798

Curious harbor seals

Large male otter

Large male otter

Once at a station, we used the CTD (Conductivity Temperature Depth) to measure salinity, temperature, and pH at eight stations within our region.

CTD measures salinity, temperature, pH among other oceanographic variables

CTD measures salinity, temperature, pH among other oceanographic variables

We also recorded GPS coordinates, and collected water samples with a syringe, and filtered them into a bottle to bring back to the lab.

Marisa is inserting CTD to measure salinity, temperature, pH

Marisa is inserting CTD to measure salinity, pH and temperature

Emily recording CTD measurements

Emily recording CTD measurements

Marisa filtering seawater

Marisa filtering seawater 

Many of the changes to Elkhorn Slough have been anthropogenic, including the construction of levees, dikes, tide gates, salt ponds, and railroads. Some of these were constructed early on for agriculture and ranching, whereas others have been created to remedy erosional problems we have created.  These barriers have altered tidal flow within Elkhorn Slough, and created distinct oceanographic areas. In order to determine differences between these areas, some stations required us to leave the boat to sample adjacent areas that were separated by a barrier.

IMG_3865

Evan braving the train tracks, photo by Jennifer Chiu

We passed by the lab, hoped we wouldn’t embarrass ourselves in front of the whole lab, and successfully finished our collections near the tide gate leading to the Old Salinas River.

MLML!

MLML!

Combined with the rest of the teams, we now have oceanographic measurements and water samples all around Elkhorn Slough and the surrounding bodies of water. Over the course of the semester, we will learn how to measure phosphate, nitrite/ nitrate, oxygen, silicate, and alkalinity of the water samples. The measurements will tell us something about how how the stations differ from each other, how Elkhorn Slough is partitioned, and the outside influences to each station.

As marine scientists, many of us spend a substantial chunk of time in the field. While field work can be frustrating and tiring, on a beautiful day like this, encountering a multitude of wildlife and puttering slowly through the beautiful waters, it is easy to remember why we went into the field of marine science.

Whalefest: Not Just a Tale of Whales

February 3, 2014 by

By Melissa Nehmens, PSRC

Whalefest banner 2014

Whalefest banner 2014

On January 25th and 26th, the Monterey Fisherman’s Wharf held its 4th annual Whalefest event to celebrate the migration of grey whales. Thanks to the efforts of fellow Pacific Shark Research Center (PSRC) student, Kristin Walovich, the PSRC and Friends of Moss Landing Marine Labs, hosted a booth at the event, speaking to attendees and passersby about what Moss Landing Marine Labs is all about!

Table attractions for the PSRC included a dehydrated Mako shark head and shark fin from our museum collection, and an anatomical model of a great white that allows you to see the inside of a shark. An interactive matching game, created by PSRC student Jessica Jang, was another favorite allowing people to test their shark knowledge by matching a shark to its description and name. We also showcased a story done by Central Coast News, interviewing PSRC director, Dave Ebert, about the lab’s role in international shark research.

How well do you know your sharks? PSRC student, Vicky Vasquez, helps a girl figure it out.

How well do you know your sharks? PSRC student, Vicky Vasquez, helps a girl figure it out.

Read the rest of this entry »

Good Vibrations: Constructing a Vibracore for Extreme Sediment Coring

January 27, 2014 by

By Catherine Drake, Invertebrate Zoology Lab

A lot of people make bucket lists, such as the “before I turn 30″ list or the classic “before I kick the bucket” list.  My personal bucket list, what I call the “self-sufficiency” list, comprises of learning various essential skills in order to be more reliant on myself in everyday life.  Last semester, those of us taking MS 202 Marine Instrumentation (deemed the “Fab Four” because there are four of us taking the class) with Dr. Kenneth Coale learned such essential skills for our futures in marine science that will allow us to think critically if we need to construct something or if faced with a mechanical problem.

Kristin Walowich practices oxyacetylene welding. Photo by: Catherine Drake.

Kristin Walowich practices oxyacetylene welding. Photo by: Catherine Drake.

Kenneth’s classic Coale-ism, “if it’s worth doing, it’s worth overdoing,” is the theme of this class.  That means the Fab Four do a lot of planning, trying out the product, and making small tweaks for the best outcome possible, which teaches us to think critically about our designs.

Microspears made by the fabrication class for Dr. Scott Hamilton of the Ichthyology Lab. Photo by: Catherine Drake.

Microspears made by the fabrication class for Dr. Scott Hamilton of the Ichthyology Lab. Photo by: Catherine Drake.

Our latest fabrication project comes from Dr. Ivano Aiello and the Geological Oceanography lab.

The problem: Ivano and his team need a contraption that will allow them to core up to 15 feet deep into sediment.  They would like to better understand sedimentation that has occurred over time in locations such as Elkhorn Slough and Pescadero Point.

The solution: a Vibracore. This machine will create vibrations to decrease friction between sediments and the core and will force the core into the ground.  It is designed for the purpose of obtaining deep cores, so it is a perfect tool for Ivano’s current project.

The parts: 1) a Vibracore head with a modification to attach to the core, and 2) a tripod to hold the core in place as coring occurs and to remove the core once coring ceases.

Our major contribution to the project was the 3 meter tall tripod using scraps from previous projects and local scrap yards.  The tripod consisted of three 2-inch pipe legs, one of which had spokes welded onto it for climbing, and a top plate that would hold come-alongs to retrieve the core from the ground.

Stephen Loiacono uses a portable grinder to shape the top plate of the tripod. Photo by: Catherine Drake.

Stephen Loiacono uses a portable grinder to shape the top plate of the tripod. Photo by: Catherine Drake.

Paul Clerkin uses a MIG welder to attach pieces to the top of our tripod. Photo by: Catherine Drake

Paul Clerkin uses a MIG welder to attach pieces to the top of our tripod. Photo by: Catherine Drake.

Once the parts were completed, we took to the field for a trial!

Our first attempt at putting together the tripod after we fabricated each piece. Photo by: Catherine Drake.

Dr. Kenneth Coale feeling triumphant after our first attempt at putting together the tripod once we fabricated each piece. Photo by: Catherine Drake.

We trekked out to Psecadero Point to obtain two cores for Christina Volpi, a graduate student in the Physical Oceanography lab, who needed to collect samples for her thesis work.  As the Vibracore head hummed, the core was shot into the ground and the sediment was contained.

A student and Dr. Ivano Aiello use the vibracore head to force the core into the ground. Photo by: Catherine Drake.

A student and Dr. Ivano Aiello use the Vibracore head to force the core into the ground. Photo by: Catherine Drake.

Christina Volpi and Mark Helfenberger use come alongs to pull the core from the muddy ground at Pescadero Point. Photo by: Vera Lawson.

Christina Volpi and Mark Helfenberger use come- alongs to pull the core from the muddy ground at Pescadero Point. Photo by: Vera Lawson.

The cores were retrieved and were taken back to the lab for sectioning.  Soon, they will be analyzed and the data will be incorporated into Christina’s Volpi’s thesis.

One of the cores from Pescadero Point after it has been sliced and sectioned for analysis. Photo by: Christina Volpi.

One of the cores from Pescadero Point after it has been sliced and sectioned for analysis. Photo by: Christina Volpi.

With the opportunity to take MS 202 Marine Instrumentation, combined with the ingenuity of Dr. Kenneth Coale, the Fab Four obtained skills necessary for being self sufficient in a marine setting (not to mention a resounding checkmark for my bucket list).  We sharpened knives, ground rust off of tools, assembled microspears, used both a lathe and a mill, welded metal objects together, and built a Vibracore for extreme coring capabilities.  It was a productive semester, and there was certainly a rewarding feeling in getting to watch the fruits of our labor work successfully when in the field.

May the Flow Be With You!

January 22, 2014 by

Scott GabaraBy Scott Gabara, Phycology “Seaweed” Lab

Circulating seawater systems are very important for marine laboratories as they need to keep organisms from the ocean alive and use the water to aid in conducting experiments.  We have recently had our Moss Landing Marine Laboratories offshore intake upgraded and we went on a dive to inspect its current status.  The large meshed cylinder sucks in water and supplies our lab with flowing seawater.  We routinely inspect and clean the surface of the grates and the structure. 

One of our MLML intakes rising from the sand.

One of our MLML intakes rising from the sand.

It is interesting to see what invertebrates recruit or move onto the structure.  With sand surrounding us we create a small oasis of life concentrated on the hard substrate.  One of the issues we have to deal with is that seawater contains invertebrate larvae and some species will settle on the inside the pipes and eventually constrict and clog our flow, similar to plaque buildup in an artery.  We have to force a Pigging Inspection Gauge (PIG), a tool which is usually a piece of cylindrical foam, through the inside of the pipe to clean and clear the walls.  It’s great we can get routine cleanings so our seawater system continues flowing and our lab doesn’t have a “heart attack”!

Diana Steller inspects our intake line.

Diana Steller, Dive Safety Officer, inspects our intake line.


Follow

Get every new post delivered to your Inbox.

Join 35 other followers